Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Am Assoc Lab Anim Sci ; 61(4): 344-352, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1975772

ABSTRACT

Bats are known natural reservoirs of several highly pathogenic zoonotic viruses, including Hendra virus, Nipah virus, rabies virus, SARS-like coronaviruses, and suspected ancestral reservoirs of SARS-CoV-2 responsible for the ongoing COVID-19 pandemic. The capacity to survive infections of highly pathogenic agents without severe disease, together with many other unique features, makes bats an ideal animal model for studying the regulation of infection, cancer, and longevity, which is likely to translate into human health outcomes. A key factor that limits bat research is lack of breeding bat colonies. To address this need, a captive bat colony was established in Singapore from 19 wild-caught local cave nectar bats. The bats were screened for specific pathogens before the start of captive breeding. Custom-made cages and an optimized diet inclusive of Wombaroo dietary formula, liquid diet, and supplement of fruits enabled the bats to breed prolifically in our facility. Cages are washed daily and disinfected once every fortnight. Bats are observed daily to detect any sick bat or abnormal behavior. In addition, bats undergo a thorough health check once every 3 to 4 mo to check on their overall wellbeing, perform sampling, and document any potential pregnancy. The current colony houses over 80 bats that are successfully breeding, providing a valuable resource for research in Singapore and overseas.


Subject(s)
COVID-19 , Chiroptera , Animals , Breeding , Disease Reservoirs , Humans , Pandemics , Phylogeny , Plant Nectar , SARS-CoV-2 , Singapore
2.
Biological Conservation ; 253:108927, 2021.
Article in English | ScienceDirect | ID: covidwho-987128

ABSTRACT

Invasive species are a growing concern with increasing global connectivity. Feral pigeons (Columba livia) are widespread and invasive, thus their effective control is of keen international interest. The COVID-19 pandemic has offered an unprecedented opportunity to investigate the impact of a nation-wide Circuit Breaker (restricted human activities) in Singapore on first, the abundance of the feral pigeons and three urban commensals—the Javan myna (Acridotheres javanicus), common myna (A. tristis), and house crow (Corvus splendens) in different food source types;and second, the activity budgets of feral pigeons. A significant and progressive decline in feral pigeon abundance was observed in open food centres and feeding hotspots after the Circuit Breaker was implemented. While the house crow and common myna were less affected, the Javan myna abundance increased moderately at refuse collection centres during the Circuit Breaker and decreased significantly in green spaces after the Circuit Breaker. Changes in food abundance could also predict changes in feral pigeon abundance and its effect was greatest in feeding hotspots. A greater proportion of feral pigeons was observed foraging and moving with a smaller proportion seen resting with probable consequences on their reproductive capacity. Our study also cautions against drawing inferences on biological responses due to similar social restrictions without careful consideration of other ecological factors, like average flock size and time of the day, which also affected the proportion of pigeons foraging on natural versus anthropogenic food. In summary, our results advocate a food limitation approach to control the feral pigeon populations.

SELECTION OF CITATIONS
SEARCH DETAIL